CHAPTER 24 KINETIC THEORY OF GASES

1. Volume of 1 mole of gas
PV = nRT ⇒ V =
$$\frac{PT}{RT} = \frac{0.082 \times 273}{1} = 22.38 \approx 22.4 L = 22.4 \times 10^{-3} = 2.24 \times 10^{-2} m^3$$

2. $n = \frac{PV}{RT} = \frac{1.1 \times 10^{-3}}{0.082 \times 273} = \frac{10^{-3}}{22.40} = \frac{1}{22400}$
No of molecules = 6.023 × 10²³ × $\frac{1}{22400} = 2.688 \times 10^{19}$
3. V = 1 cm³, T = 0°C, P = 10⁻⁵ mm of Hg
 $n = \frac{PV}{RT} = \frac{fgh \times V}{fRT} = \frac{1.38 \times 980 \times 10^{-6} \times 1}{8.31 \times 273} = 5.874 \times 10^{-13}$
No. of molecules = No × n = 6.023 × 10²³ × 5.874 × 10^{-13} = 3.538 × 10^{11}
4. $n = \frac{PV}{RT} = \frac{1.1 \times 10^{-3}}{0.082 \times 273} = \frac{10^{-3}}{22.4}$
mass = $\frac{(10^{-3} \times 22)}{22.4}$
 $mass = \frac{(10^{-3} \times 22)}{22.4} g = 1.428 \times 10^{-3} g = 1.428 mg$
5. Since mass is same
 $n_1 = n_2 = n$
 $P_1 = \frac{nR \times 300}{V_0}$, $P_2 = \frac{nR \times 600}{2V_0}$
 $\frac{P_1}{P_2} = \frac{nR \times 300}{V_0}$, $P_2 = \frac{nR \times 600}{2V_0} = \frac{1}{1} = 1 : 1$
6. V = 250 cc = 250 × 10⁻³
P = 10⁻³ mm = 10⁻⁵ × 13600 × 10 pascal = 136 × 10⁻³ pascal
T = 27°C = 300 K
 $n = \frac{PV}{RT} = \frac{136 \times 250}{8.3 \times 300} \times 10^{-3} = \frac{136 \times 250}{6.3 \times 300} \times 10^{-6}$
No. of molecules = $\frac{136 \times 250}{8.3 \times 300} \times 10^{-5} R_1$, $T_1 = 300 K$, $T_2 = ?$
Since, V₁ = V₂ = $\frac{1 \times 10^{5} P_{a}}{300} = \frac{1 \times 10^{5} P_{a}}{1}$, $T_1 = 300 K$, $P = ?$
 $\frac{PV_1}{P_1} = \frac{P_2V_2}{T_2} \Rightarrow \frac{8 \times 10^{15} N}{300} = 1.23 atm = 1.23 \times 10^{5} pa \approx 1.23 \times 10^{5} pa$
8. $m = 2g$, $V = 0.02 m^{3} = 0.02 \times 10^{6} cc = 0.02 \times 10^{3} L$, $T = 300 K$, $P = ?$
 $PV = nRT \Rightarrow PV = \frac{m}{M}RT \Rightarrow P \times 2g = \frac{2}{2} \times 0.082 \times 300$
 $\Rightarrow P = \frac{0.082 \times 300}{20} = 1.23 atm = 1.23 \times 10^{5} pa \approx 1.23 \times 10^{5} pa$
9. $P = \frac{m}{V} = \frac{m}{M} RT \Rightarrow \frac{fRT}{M} = \frac{fRT}{M}$
 $R \to 8.31 \times 10^{7} erm^{3}$
 $R \to 8.31 \times 10^{7} erm^{3}$

10. Tat Simila = 15°C = 15 + 273 = 288 K
P at Simila = 72 cm = 72 × 10² × 13600 × 9.8
Tat Kalka = 36°C = 35 + 273 = 308 K
P at Kalka = 36°C = 35 + 273 = 308 K
P at Kalka = 76 cm = 76 × 10² × 13600 × 9.8
PV = MRT

$$\Rightarrow PV = \frac{M}{M}RT \Rightarrow PM = \frac{M}{W}RT \Rightarrow f = \frac{PM}{RT}$$

 $\frac{fSimila}{fKalka} = \frac{P_{Simila} \times M}{RT_{Simila}} \times \frac{RT_{Kalka}}{P_{Kalka} \times M}$
 $= 72 \times 10^{-2} \times 10^{-2} \times 13600 \times 9.8 = \frac{72 \times 308}{76 \times 288} = 1.013$
 $\frac{fKalka}{fSimila} = \frac{1}{1.013} = 0.987$
11. n, e, $p_2 = n$
 $P_1 = \frac{nRT}{V}$, $P_2 = \frac{nRT}{3V}$
 $P_1 = \frac{nRT}{V}$, $P_2 = \frac{nRT}{3V}$
 $P_1 = \frac{nRT}{V}$, $P_2 = \frac{nRT}{3V}$
 $P_2 = \frac{nRT}{V} \times \frac{3V}{RT} = 3 : 1$
 $P_1 = \frac{nRT}{V}$, $P_2 = \frac{nRT}{3V}$
 $P_2 = \frac{1000}{2 \times 10^3}$ = 1932.6 m/s = 1930 m/s
Let the temp. at which the C = 2 × 1932.6 is T
 $2 \times 1932.6 = \sqrt{\frac{3 \times 8.3 \times 10^{-2}}{2 \times 10^{-3}}} = 17$
 $2 \times 1932.6 = \sqrt{\frac{3 \times 8.3 \times 17}{2 \times 10^{-3}}} \Rightarrow (2 \times 1932.6)^2 = \frac{3 \times 8.3 \times 17}{2 \times 10^{-3}}$
 $\Rightarrow C' = \frac{13018 \times 10^{-2}}{10^{-3}} = 13018 \times 1302 m/s.$
14. Agy, K.E. = $32 \times RT$
 $3_2 \times RT = 0.04 \times 1.6 \times 10^{-19}$
 $\Rightarrow T = \frac{2 \times 0.04 \times 1.6 \times 10^{-19}}{3 \times 1.4 \times 0.052}$
 $T = \frac{28747.83}{3600} \text{ km} = 7.985 \approx 8 \text{ hms}.$
16. M = 4 × 10⁻³ Kg
 $V_{weg} = \sqrt{\frac{8RT}{\pi M}} = \sqrt{\frac{8 \times 8.3 \times 277}{3 \times 14 \times 4 \times 10^{-3}}} = 1201.35$
Momentum = M × W_{weg} = 6.64 \times 10^{-77} \times 120^{-24} \approx 8 \times 10^{-24} \times Kg-m/s.

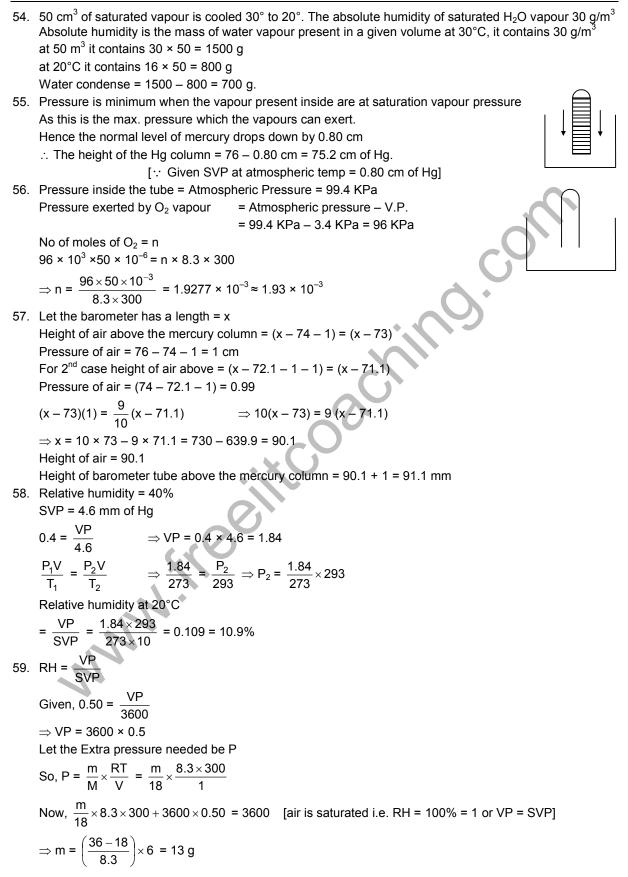
17. $V_{avg} = \sqrt{\frac{8RT}{\pi M}} = \frac{8 \times 8.3 \times 300}{3.14 \times 0.032}$ Now, $\frac{8RT_1}{\pi \times 2} = \frac{8RT_2}{\pi \times 4}$ $\frac{T_1}{T_2} = \frac{1}{2}$ 18. Mean speed of the molecule = $\sqrt{\frac{8RT}{-M}}$ Escape velocity = $\sqrt{2gr}$ $\sqrt{\frac{8RT}{\pi M}} = \sqrt{2gr} \implies \frac{8RT}{\pi M} = 2gr$ $\Rightarrow T = \frac{2gr\pi M}{8R} = \frac{2 \times 9.8 \times 6400000 \times 3.14 \times 2 \times 10^{-3}}{8 \times 8.3} = 11863.9 \approx 11800 \text{ m/s}.$ con 19. $V_{avg} = \sqrt{\frac{8RT}{\pi^{M}}}$ $\frac{V_{avg}H_2}{V_{avg}N_2} = \sqrt{\frac{8RT}{\pi \times 2}} \times \sqrt{\frac{\pi \times 28}{8RT}} = \sqrt{\frac{28}{2}} = \sqrt{14} = 3.74$ 20. The left side of the container has a gas, let having molecular wt. M_1 Right part has Mol. wt = M₂ Temperature of both left and right chambers are equal as the separating wall is diathermic $\sqrt{\frac{3\mathsf{RT}}{\mathsf{M}_1}} = \sqrt{\frac{8\mathsf{RT}}{\pi\mathsf{M}_2}} \Rightarrow \frac{3\mathsf{RT}}{\mathsf{M}_1} = \frac{8\mathsf{RT}}{\pi\mathsf{M}_2} \Rightarrow \frac{\mathsf{M}_1}{\pi\mathsf{M}_2} = \frac{3}{8} \Rightarrow \frac{\mathsf{M}_1}{\mathsf{M}_2} = \frac{3\pi}{8} = 1.1775 \approx 1.18$ 21. $V_{\text{mean}} = \sqrt{\frac{8\text{RT}}{\pi M}} = \sqrt{\frac{8 \times 8.3 \times 273}{3.14 \times 2 \times 10^{-3}}} = 1698.96$ Total Dist = 1698.96 m No. of Collisions = $\frac{1698.96}{1.38 \times 10^{-7}} = 1.23 \times 10^{10}$ 22. $P = 1 \text{ atm} = 10^5 \text{ Pascal}$ T = 300 K, $M = 2 g = 2 \times 10^{-3} \text{ Kg}$ (a) $V_{avg} = \sqrt{\frac{8RT}{\pi M}} = \sqrt{\frac{8 \times 8.3 \times 300}{3.14 \times 2 \times 10^{-3}}} = 1781.004 \approx 1780 \text{ m/s}$ (b) When the molecules strike at an angle 45°, Force exerted = mV Cos 45° – (-mV Cos 45°) = 2 mV Cos 45° = 2 m V $\frac{1}{\sqrt{2}} = \sqrt{2}$ mV No. of molecules striking per unit area = $\frac{\text{Force}}{\sqrt{2}\text{mv} \times \text{Area}} = \frac{\text{Pr essure}}{\sqrt{2}\text{mV}}$ $= \frac{10^5}{\sqrt{2} \times 2 \times 10^{-3} \times 1780} = \frac{3}{\sqrt{2} \times 1780} \times 10^{31} = 1.19 \times 10^{-3} \times 10^{31} = 1.19 \times 10^{28} \approx 1.2 \times 10^{28}$ 23. $\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$ $P_1 \rightarrow 200 \text{ KPa} = 2 \times 10^5 \text{ pa}$ P₂ = ? T₂ = 40°C = 313 K $T_1 = 20^{\circ}C = 293 \text{ K}$ $V_2 = V_1 + 2\% V_1 = \frac{102 \times V_1}{100}$ $\Rightarrow \frac{2 \times 10^5 \times V_1}{293} = \frac{P_2 \times 102 \times V_1}{100 \times 313} \Rightarrow P_2 = \frac{2 \times 10^7 \times 313}{102 \times 293} = 209462 \text{ Pa} = 209.462 \text{ KPa}$

24.
$$V_1 = 1 \times 10^{-3} \text{ m}^3$$
, $P_1 = 1.5 \times 10^5 \text{ Pa}$, $T_1 = 400 \text{ K}$
 $P_1V_1 = n, R, T_1$
 $\Rightarrow n = \frac{P_1V_1}{R_1T_1} = \frac{1.5 \times 10^5 \times 1 \times 10^{-3}}{8.3 \times 400}$ $\Rightarrow n = \frac{1.5}{8.3 \times 4}$
 $\Rightarrow m_1 = \frac{1.5}{8.3 \times 4} \times M = \frac{1.5}{8.3 \times 4} \times 32 = 1.4457 \approx 1.446$
 $P_2 = 1 \times 10^5 \text{ Pa}$, $V_2 = 1 \times 10^{-3} \text{ m}^3$, $T_2 = 300 \text{ K}$
 $P_2V_2 = n_2R_1T_2$
 $\Rightarrow n_2 = \frac{P_2V_2}{R_2T_2} = \frac{10^5 \times 10^{-3}}{8.3 \times 300} = \frac{1}{3 \times 8.3} = 0.040$
 $\Rightarrow m_2 = 0.04 \times 82 = 1.285$
 $\Delta m = m_1 - m_2 = 1.446 - 1.285 = 0.1608 \text{ g} = 0.16 \text{ g}$
25. $P_1 = 10^6 + \text{ fgh} = 10^6 + 1.000 \times 10 \times 3.3 = 1.33 \times 10^6 \text{ pa}$
 $P_2 = 10^6$, $T_1 = T_2 = T$, $V_1 = \frac{4}{3}\pi(2 \times 10^{-3})^3$
 $V_2 = \frac{4}{3}\pi^3$, $r = 7$
 $\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$
 $\Rightarrow \frac{1.33 \times 10^5 \times \frac{4}{3} \times \pi \times (2 \times 10^{-3})^3}{T_1} = \frac{10^5 \times \frac{4}{3} \times \pi^2}{T_2}$
 $\Rightarrow 1.33 \times 8 \times 10^5 \times 10^{-9} = 10^5 \times r^3$ $\Rightarrow r = \sqrt[3]{10.64 \times 10^{-3}} = 2.19 \times 10^{-3} = 2.2 \text{ mm}$
26. $P_1 = 2 \text{ atm} = 2 \times 10^5 \text{ pa}$
 $V_1 = 0.002 \text{ m}^3$, $T_1 = 300 \text{ K}$
 $P_1V_1 = n.RT_1$
 $\Rightarrow n = \frac{P_1V_1}{R_1} = \frac{2 \times 10^5 \times 0.002}{8.3 \times 300} = \frac{4}{8.3 \times 3} = 0.1606$
 $P_2 = 1 \text{ atm} = 10^6 \text{ pa}$
 $V_2 = 0.0008 \text{ m}^3$, $T_2 = 300 \text{ K}$
 $P_2V_2 = n_2R_12$
 $\Rightarrow n_2 = \frac{P_2V_2}{R_12} = \frac{10^5 \times 0.002}{8.3 \times 300} = \frac{5}{3 \times 8.3} \times \frac{1}{10} = 0.02$
 $\Delta n \text{ moles leaked out = 0.16 - 0.02 = 0.14$
27. $m = 0.040 \text{ g}$, $T = 100^{\circ}\text{ C}$, $M_{149} = 4 \text{ g}$
 $U = \frac{3}{2} nR_1 = \frac{3}{2} \frac{M}{M} \times RT$, $T = 7$
 $\text{ Given } \frac{3}{2} \times \frac{M}{M} \times RT + 12 = \frac{3}{2} \times \frac{M}{M} \times RT'$
 $\Rightarrow T = \frac{58.4385}{2.1245} = 469.3855 \text{ K} = 196.3^{\circ}\text{ C} = 196^{\circ}\text{ C}$
28. $PV^2 = \text{ constant}$
 $\Rightarrow P_1V_1^2 = P_2V_2^2$
 $\Rightarrow R_1V_1 = 0.7V_2^2$
 $\Rightarrow \frac{R_1V_1}{V_1} = \frac{nR_1}{V_2} \times V_2^2$
 $\Rightarrow \frac{R_1V_1}{V_1} = \frac{nR_1}{V_2} \times V_2$
 $\Rightarrow T_1V_1 = T_2V_2 = TV = T_1 \times 2V \Rightarrow T_2 = \frac{T}{2}$

29.
$$P_{0,z} = \frac{n_{y_{c}}RT}{V}$$
, $P_{H_{z}} = \frac{n_{h_{c}}RT}{V}$
 $n_{0,z} = \frac{n_{w_{c}}}{M_{0,z}} = \frac{1.60}{32} = 0.05$
Now, $P_{m_{z}} = \left(\frac{n_{0,z} + n_{H_{z}}}{M_{H_{z}}}\right)RT$
 $n_{H_{z}} = \frac{m_{z}}{M_{H_{z}}} = \frac{2.80}{28} = 0.1$
 $P_{m_{z}} = \frac{(0.05 + 0.1) \times 8.3 \times 300}{0.160} = 2250 \text{ N/m}^{2}$
30. $P_{1} = \text{Atmosphetic pressure} + \text{Mercury pessue} = 75 fg + hgfg (if h = height of mercury)$
 $V_{z} = (100 - h) A$
 $P_{1}V_{z} = P_{2}V_{z}$
 $= 75 fg((100A) = (75 + h)fg(100 - h)A$
 $= 75 fz(100 - h)(75 + h)fg(100 - h)A$
 $= 75 fz(100 - h)(75 + h)fg(100 - h)A$
 $= 75 fz(100 - h)(75 + h)fg(100 - h)A$
 $= 75 fz(100 - h)A$
 $P_{1}V_{z} = P_{2}V_{z}$
 $= 75 fg(100A) = (75 + h)fg(100 - h)A$
 $= 75 fz(100 - h)A + P_{2}V_{z}$
 $= 75 fg(100A) = (75 + h)fg(100 - h)A$
 $= 75 fz(100 - h)A + P_{0}V_{z} = Pa + 25 cm$
Height of mercury that can be poured = 25 cm
Height of mercury that can be poured = 25 cm
After connection $P_{A}' \rightarrow Partial pressure of A$
 $P_{0}' \rightarrow Partial pressure of A$
 $P_{0}' \rightarrow Partial pressure of B$
Now, $\frac{P_{A}' \times 2V}{T} = \frac{P_{A} \times V}{T_{A}}$
 $Or $\frac{P_{A}'}{T} = \frac{P_{A}}{2T_{A}} + \frac{P_{B}}{2T_{B}} = \frac{1}{2} \left(\frac{P_{A}}{T_{A}} + \frac{P_{B}}{T_{B}}\right)$
 $(\therefore P_{A}' + P_{B}' = P]$
32. V = 50 c c = 50 \times 10^{-6} cm^{-3}$
 $P = 100 \text{ RP}_{T} \rightarrow 0 = \frac{P_{M}V}{RT_{T}} = \frac{10^{5} \times 28.8 \times 50 \times 10^{-6}}{8.3 \times 273} = \frac{50 \times 28.8 \times 10^{-1}}{8.3 \times 373} = 0.0635 \text{ g.}$
(b) When the vessel is kept on boiling water
 $PV = \frac{m}{M}RT_{a} = m = \frac{P_{M}V}{RT_{a}} = \frac{10^{5} \times 28.8 \times 50 \times 10^{-6}}{8.3 \times 373} = \frac{50 \times 28.8 \times 10^{-1}}{8.3 \times 373} = 0.0465$
(c) When the vessel is closed
 $P \times 50 \times 10^{-6} = \frac{0.0465 \times 8.8 \times 273}{28.8 \times 0.3 \times 0^{-7}} = 0.07316 \times 10^{6} Pa = 73 \text{ KPa}$

33. <u>Case I</u> \rightarrow Net pressure on air in volume V Π = $P_{atm} - hfg$ = 75 × $f_{Hg} - 10 f_{Hg}$ = 65 × f_{Hg} × g 20 cm <u>Case II</u> \rightarrow Net pressure on air in volume 'V' = P_{atm} + f_{Hq} × g × h 1 ↓ 10 cm 10 cm $P_1V_1 = P_2V_2$ \Rightarrow $f_{Hg} \times g \times 65 \times A \times 20 = f_{Hg} \times g \times 75 + f_{Hg} \times g \times 10 \times A \times h$ \Rightarrow 62 × 20 = 85 h \Rightarrow h = $\frac{65 \times 20}{85}$ = 15.2 cm \approx 15 cm 34. $2L + 10 = 100 \Rightarrow 2L = 90 \Rightarrow L = 45 \text{ cm}$ Applying combined gas egn to part 1 of the tube $\frac{(45A)P_0}{300} = \frac{(45-x)P_1}{273}$ $\Rightarrow \mathsf{P}_1 = \frac{273 \times 45 \times \mathsf{P}_0}{300(45 - x)}$ 10 27°C Applying combined gas eqn to part 2 of the tube $\frac{45AP_0}{300} = \frac{(45+x)AP_2}{400}$ $\Rightarrow \mathsf{P}_2 = \frac{400 \times 45 \times \mathsf{P}_0}{300(45 + x)}$. L+x $P_1 = P_2$ P₁ P₂ $\Rightarrow \frac{273 \times 45 \times P_0}{300(45-x)} = \frac{400 \times 45 \times P_0}{300(45+x)}$ 10 0°C 0°C \Rightarrow (45 – x) 400 = (45 + x) 273 \Rightarrow 18000 - 400 x = 12285 + 273 x \Rightarrow (400 + 273)x = 18000 - 12285 \Rightarrow x = 8.49 $P_1 = \frac{273 \times 46 \times 76}{300 \times 36.51} = 85 \% 25 \text{ cm of Hg}$ Length of air column on the cooler side = L - x = 45 - 8.49 = 36.5135. Case I Atmospheric pressure + pressure due to mercury column Case II Atmospheric pressure + Component of the pressure due to mercury column 20cm $P_1V_1 = P_2V_2$ $\Rightarrow (76 \times f_{\rm Hg} \times g + f_{\rm Hg} \times g \times 20) \times A \times 43$ 43cm = $(76 \times f_{\text{Hg}} \times g + f_{\text{Hg}} \times g \times 20 \times \text{Cos } 60^{\circ}) \text{ A} \times \ell$ $\Rightarrow 96 \times 43 = 86 \times \ell$ $\Rightarrow \ell = \frac{96 \times 43}{86} = 48 \text{ cm}$ 36. The middle wall is weakly conducting. Thus after a long 10 cm 🗕 20 cm 🔄 time the temperature of both the parts will equalise. The final position of the separating wall be at distance x 400 K 100 K ΤP from the left end. So it is at a distance 30 - x from the right Р P end Putting combined gas equation of one side of the separating wall, $\frac{\mathsf{P}_1 \times \mathsf{V}_1}{\mathsf{T}_1} = \frac{\mathsf{P}_2 \times \mathsf{V}_2}{\mathsf{T}_2}$ $\Rightarrow \frac{\mathsf{P} \times 20\mathsf{A}}{400} = \frac{\mathsf{P}' \times \mathsf{A}}{\mathsf{T}}$...(1) $\Rightarrow \frac{P \times 10A}{100} = \frac{-P'(30-x)}{T}$...(2) Equating (1) and (2) $\Rightarrow \frac{1}{2} = \frac{x}{30-x}$ \Rightarrow 30 – x = 2x \Rightarrow 3x = 30 \Rightarrow x = 10 cm

The separator will be at a distance 10 cm from left end.


37.
$$\frac{dV}{dt} = r \Rightarrow dV = r dt$$
Let the pumped out gas pressure dp
Volume of container = V₀ At a pump dv amount of gas has been pumped out.
Pdv = -V₀dT ⇒ P₀ df = -V₀ dp
 $\Rightarrow \int_{0}^{1} \frac{dp}{p} = -\int_{0}^{1} \frac{dtr}{V_{0}} \Rightarrow P = P = r^{-(t/V_{0})}$
Half of the gas has been pump out, Pressure will be half = $\frac{1}{2}e^{-st/V_{0}}$
 $\Rightarrow \ln 2 = \frac{rt}{V_{0}} \Rightarrow t = \ln^{2} \frac{Y_{0}}{r}$
38. $P = \frac{P_{0}}{1 + \left(\frac{V}{V_{0}}\right)^{2}}$ [PV = nRT according to ideal gas equation]
 $\Rightarrow \frac{RT}{V} = \frac{P_{0}}{1 + \left(\frac{V}{V_{0}}\right)^{2}}$ [Since n = 1 mole]
 $\Rightarrow \frac{RT}{V_{0}} = \frac{P_{0}}{1 + \left(\frac{V}{V_{0}}\right)^{2}}$ [At V = V₀]
 $\Rightarrow P_{0}V_{0} = RT(1 + 1) \Rightarrow P_{0}V_{0} = 2 RT \Rightarrow T = \frac{P_{0}V_{0}}{2R}$
39. Internal energy = nRT
Now, PV = nRT
Now, PV = nRT
Now, PV = nRT
Numeration energy = R × Constant
 $\Rightarrow nT$ is constant
 \therefore Internal energy = R × Constant = Constant
40. Frictional force = μ Nd
Before that the work will not start that means volume remains constant
 $\Rightarrow \frac{P_{1}}{T_{1}} = \frac{P_{2}}{T_{2}} = \frac{1}{300} = \frac{P_{2}}{600} \Rightarrow P_{2} = 2 atm$
 \therefore Extra Pressure = 2 atm - 1 atm = 1 atm
Work done by criticional force = π Md
 $N = \frac{1 \times 10^{5} \times (5 \times 10^{-2})^{2}}{2} = \frac{1 \times 10^{5} \times \pi \times 25 \times 10^{-5}}{0.2 \times 2 \times \pi T^{-5}} = 1.25 \times 10^{4} NM$

Kinetic Theory of Gases

		Kinetic Theory of Gases
41.	$\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2}$	
	$\Rightarrow \frac{P_0 V}{T_0} = \frac{P' V}{2T_0} \Rightarrow P' = 2 P_0$	
	Net pressure = P_0 outwards	
	\therefore Tension in wire = P ₀ A	
	Where A is area of tube.	
42.	(a) $2P_0x = (h_2 + h_0)fg$ [: Since liquid at the same level have same pressu	ure]
	$\Rightarrow 2P_0 = h_2 fg + h_0 fg$	
	$\Rightarrow h_2 fg = 2P_0 - h_0 fg \qquad $	
	$h_{2} = \frac{2P_{0}}{fg} - \frac{h_{0}fg}{fg} = \frac{2P_{0}}{fg} - h_{0}$	$2P_0$ h_0 h_1
	(b) K.E. of the water = Pressure energy of the water at that layer	
	$\Rightarrow \frac{1}{2} \mathrm{mV}^2 = \mathrm{m} \times \frac{\mathrm{P}}{\mathrm{f}}$	6
	$\Rightarrow V^2 = \frac{2P}{f} = \left[\frac{2}{f(P_0 + fg(h_1 - h_0))}\right]$	•
	$\Rightarrow V = \left[\frac{2}{f(P_0 + fg(h_1 - h_0))}\right]^{1/2}$	
	(c) $(x + P_0)fh = 2P_0$	
	$\therefore 2P_0 + fg (h - h_0) = P_0 + fgx$	
	$\therefore X = \frac{P_0}{fg + h_1 - h_0} = h_2 + h_1$	
	\therefore i.e. x is h_1 meter below the top \Rightarrow x is $-h_1$ above the top	
43.	$A = 100 \text{ cm}^2 = 10^{-3} \text{ m}$	
	m = 1 kg, $P = 100 \text{ K Pa} = 10^5 \text{ Pa}$	
	l = 20 cm	
	<u>Case I</u> = External pressure exists <u>Case II</u> = Internal Pressure does not exist	
	$P_1V_1 = P_2V_2$	
	$\Rightarrow \left(10^5 + \frac{1 \times 9.8}{10^{-3}}\right) V = \frac{1 \times 9.8}{10^{-3}} \times V'$	
	$\Rightarrow (10^{5} + 9.8 \times 10^{3}) A \times l = 9.8 \times 10^{3} \times A \times l'$	
	$\Rightarrow 10^5 \times 2 \times 10^{-1} + 2 \times 9.8 \times 10^2 = 9.8 \times 10^3 \times \ell'$	
	$\Rightarrow l' = \frac{2 \times 10^4 + 19.6 \times 10^2}{9.8 \times 10^3} = 2.24081 \text{ m}$ $P_1 V_1 = P_2 V_2$	
44	$P_{\rm A}V_{\rm A} = P_{\rm A}V_{\rm A}$	
	$\Rightarrow \left(\frac{\mathrm{mg}}{\mathrm{A}} + \mathrm{P}_{\mathrm{0}}\right) \mathrm{A}\ell \ \mathrm{P}_{\mathrm{0}} \ \mathrm{A}\ell$	
	$\Rightarrow \left(\frac{1 \times 9.8}{10 \times 10^{-4}} + 10^5\right) 0.2 = 10^5 \ell'$	
	$\Rightarrow (9.8 \times 10^3 + 10^5) \times 0.2 = 10^5 \ell'$	
	$\Rightarrow 109.8 \times 10^3 \times 0.2 = 10^5 \ell'$	
	$\Rightarrow \ell' = \frac{109.8 \times 0.2}{10^2} = 0.2196 \approx 0.22 \text{ m} \approx 22 \text{ cm}$	

Kinetic Theory of Gases

			Triffette Theory of Ouses	
45.	When the bulbs are maintained at two differences of the base series of the base series of the base last series of the base las	•	\bigvee \bigvee	
	The total heat gained by 'B' is the heat los		(A B)	
	Let the final temp be x	, , , , , , , , , , , , , , , , , , , ,))	
	$\Rightarrow n_1 M \times s(x - 0) = n_2 M \times S \times (62 - x)$	\Rightarrow n ₁ x = 62n ₂ - n ₂ x		
	\Rightarrow x = $\frac{62n_2}{n_1 + n_2} = \frac{62n_2}{2n_2} = 31^{\circ}C = 304 \text{ K}$			
	For a single ball	Initial Temp = 0°C	P = 76 cm of Hg	
	$\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2}$	$V_1 = V_2$	Hence $n_1 = n_2$	
	$\overline{T_1}$ $\overline{T_2}$	$\mathbf{v}_1 - \mathbf{v}_2$		
	$\Rightarrow \frac{76 \times V}{273} = \frac{P_2 \times V}{304} \Rightarrow P_2 = \frac{403 \times 76}{273} =$	84.630 ≈ 84°C		
46.	Temp is 20° Relative humi			
	So the air is saturated at 20°C			
	Dew point is the temperature at which SV	P is equal to present vapour pre	essure	
	So 20°C is the dew point.	· · · · · · · · · · · · · · · · · · ·	0	
47.	T = 25°C P = 104 KPa		$\dot{\sim}$	
	$RH = \frac{VP}{SVP} \qquad [SVP = 3.2 KPa,]$	RH = 0.6]		
	$VP = 0.6 \times 3.2 \times 10^3 = 1.92 \times 10^3 \approx 2 \times 10^3$	$)^3$		
	When vapours are removed VP reduces to			
	Net pressure inside the room now = 104 ×	$\times 10^3 - 2 \times 10^3 = 102 \times 10^3 = 10$	2 KPa	
48.		point = 10°C		
	The place is saturated at 10°C			
	Even if the temp drop dew point remains unaffected.			
	The air has V.P. which is the saturation VI	P at 10°C. It (SVP) does not cha	ange on temp.	
49.	$RH = \frac{VP}{SVP}$			
	011	sing $V = S V = C$		
	The point where the vapour starts condensing, VP = SVP We know $P_1V_1 = P_2V_2$			
	$R_{H} \text{ SVP} \times 10 = \text{SVP} \times V_{2} \qquad \Rightarrow V_{2} = 10R_{H} \Rightarrow 10 \times 0.4 = 4 \text{ cm}^{3}$			
50	Atm–Pressure = 76 cm of Hg	H → 10 × 0.4 - 4 Cm		
50.	When water is introduced the water vapou	ir everts some pressure which a	counter acts the atm pressure	
	The pressure drops to 75.4 cm	ar exerts some pressure which t		
	Pressure of Vapour = $(76 - 75.4)$ cm = 0.6	3 cm		
	R. Humidity = $\frac{VP}{SVP} = \frac{0.6}{1} = 0.6 = 60\%$			
51.	From fig. 24.6, we draw $\perp r$, from Y axis to	meet the graphs.		
	Hence we find the temp. to be approximat	ely 65°C & 45°C		
52.	The temp. of body is 98°F = 37°C			
	At 37°C from the graph SVP = Just less than 50 mm			
	B.P. is the temp. when atmospheric press	ure equals the atmospheric pre-	ssure.	
	Thus min. pressure to prevent boiling is 50	0 mm of Hg.		
53.	Given			
	SVP at the dew point = 8.9 mm	SVP at room temp = 17.5 mn	ו	
	Dew point = 10°C as at this temp. the con-	densation starts		
	Room temp = 20°C			
	$RH = \frac{SVP \text{ at dew point}}{SVP \text{ at room temp}} = \frac{8.9}{17.5} = 0.500$	8≈51%		
	SVP at room temp 17.5			

60. T = 300 K, Rel. humidity = 20%, V = 50 m³
SVP at 300 K = 3.3 KPa, V.P. = Relative humidity × SVP = 0.2 × 3.3 × 10³
PV =
$$\frac{m}{M}RT \Rightarrow 0.2 \times 3.3 \times 10^{3} \times 50 = \frac{m}{18} \times 8.3 \times 300$$

 $\Rightarrow m = \frac{0.2 \times 3.3 \times 50 \times 18 \times 10^{3}}{8.3 \times 300} = 238.55 \text{ grams} \approx 238 \text{ g}$
Mass of water present in the room = 238 g.
61. RH = $\frac{VP}{SVP} \Rightarrow 0.20 = \frac{VP}{3.3 \times 10^{3}} \Rightarrow VP = 0.2 \times 3.3 \times 10^{3} = 660$
PV = $nRT \Rightarrow P = \frac{nRT}{V} = \frac{m}{M} \times \frac{RT}{V} = \frac{500}{18} \times \frac{8.3 \times 300}{50} = 1383.3$
Net P = 1383.3 + 660 = 2043.3 Now, RH = $\frac{2034.3}{3300} = 0.619 \approx 62\%$
62. (a) Rel. humidity = $\frac{VP}{SVP} at 15^{\circ}C \Rightarrow 0.4 = \frac{VP}{1.6 \times 10^{3}} \Rightarrow VP = 0.4 \times 1.6 \times 10^{3}$
The evaporation occurs as along as the atmosphere does not become saturated
Net pressure change = 1.6 \times 10^{3} - 0.4 \times 1.6 \times 10^{3} = (1.6 - 0.4 \times 1.6)10^{3} = 0.96 \times 10^{3}
Net mass of water evaporated = m $\Rightarrow 0.96 \times 10^{3} \times 50 = \frac{m}{18} \times 8.3 \times 288$
 $\Rightarrow m = \frac{0.96 \times 50 \times 18 \times 10^{3}}{8.3 \times 288} = 361.45 \approx 361 \text{ g}$
(b) At 20°C SVP = 2.4 KPa, At 15°C SVP = 1.6 KPa
Net pressure charge = (2.4 - 1.6) \times 10^{3} Da = 0.8 \times 10^{3} Pa
Mass of water evaporated = m' = 0.8 \times 10^{3} 50 = \frac{m'}{18} \times 8.3 \times 293
 $\Rightarrow m' = \frac{0.8 \times 50 \times 18 \times 10^{3}}{8.3 \times 293} = 296.06 \approx 296 \text{ grams}$